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This paper deals with the wave pattern and wave resistance of a slender ship moving
steadily at supercritical speed in a shallow water channel. Using, successively, linear
and nonlinear shallow-water wave theory it is demonstrated that, if the hull form is
adapted to speed and channel geometry according to certain rules, the ship waves
can be made to form a localized pattern around the ship that moves at the same
speed as the ship and at the same time the associated wave resistance can be made to
vanish. In the nonlinear case, the zero-wave-resistance ship hull is derived from a KP
equation solution of the oblique interaction of two identical solitons. This astonishing
phenomenon may be called shallow-channel superconductivity.

1. Introduction
Recently Chen & Sharma (1994, hereinafter abbreviated C-S) investigated the

steady asymmetric motion of a slender ship in a straight channel of rectangular
cross-section, using nonlinear shallow-water wave theory supported by model tests
in a towing tank. It was found by numerical computation and verified by physical
measurement that the wave resistance of a ship moving at supercritical speed parallel
to the channel axis can be reduced significantly by shifting its track from the channel
centreplane to a certain speed-dependent location near one of the channel sidewalls.
It was slightly surprising for one might generally expect a symmetric configuration
to produce the least resistance and because no comparable effect was noticed in the
subcritical speed range. This phenomenon of supercritical wave-resistance reduction
by asymmetry is not just an intellectual curiosity but seems to be practically significant.
We would like to recapitulate an important finding of C-S that was not explicitly and
sufficiently emphasized in the original paper. For a standard ship model of Series 60
hullform of block coefficient 0.6 and length 4.689 m running at depth Froude number
1.3 in a channel of width 9.81 m and water depth 0.5 m, the wave resistance was
found to be least when the ship track was 20% of channel width away from the near
sidewall. In fact, it was then about 30% lower in both calculations and experiments
compared to the symmetric case of ship motion on the channel centreplane, see
figure 5(a) of C-S.

A brief explanation was also offered in C-S. It was that the bow wave after
reflection from the near sidewall eventually hits the afterbody and counteracts the
stern wave so that the resultant wave in the wake is weakened. In terms of pressure
the reflected bow wave exerts a push on the hull when it acts on the afterbody.
Either way, the wave resistance is diminished compared to when bow waves stay clear
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Figure 1. (a) Calculated wave pattern of a standard ship model of Series 60 hull form in off-centre
motion (from left to right) parallel to channel axis at 20% channel width from the near wall at
supercritical depth Froude number U = 1.3. The wave resistance non-dimensionalized by ship
weight Cw = 0.036, its reduction (Cwo −Cw)/Cwo = 30%, where Cwo is the wave resistance value for
motion along the channel centreline. (b) Schematic of the mechanism of wave resistance reduction
by sidewall reflection

of the stern. Similar favourable wave interference effects based on classical linear
theory have been reported earlier, e.g. for the catamaran configuration (theoretically
equivalent to a single sidewall) in deep as well as finite-depth water by Eggers (1955,
figures 2 and 18) and for a finite-width channel at supercritical speeds by Kirsch
(1966, figures 2–9). The phenomenon is less apparent in the subcritical speed range
(and, of course, in deep water) because the relatively strong dispersion prevents an
effective interference between bow and stern waves. By contrast, in the supercritical
speed range all ship waves have almost the same phase speed and parallel crest lines,
only weakly dependent on wavelength, so that the interaction of reflected bow waves
with the stern waves becomes very distinct.

In order to visualize the mechanism of wave reduction more clearly, we reran
our computer program ‘shallowtank’ for the minimal wave-resistance case mentioned
above and obtained the associated wave pattern, see figure 1. At supercritical speeds
the bow and stern waves are dominant and the ship wave pattern is just like the shock
wave of an aerofoil in supersonic flight. The bow creates a free-surface elevation; the
stern, a depression. It is clearly observed in figure 1 that the starboard bow wave (here
on the near-wall side) is reflected by the channel sidewall and in extending across
the three-dimensional stern it almost completely cancels the port stern wave (on the
far-wall side) as evidenced by comparison with the strong starboard stern wave (on
the near-wall side).

Naturally, one is inspired by figure 1 to also move the far wall close to the ship so
that the starboard stern wave would be cancelled as well by the reflected port bow
wave. By numerical experimentation we obtained the optimal channel width for a
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Figure 2. Calculated wave patterns of a standard ship model of Series 60 hull form moving
along the channel centreline at depth Froude number U = 1.3 in (a) the original channel of width
w∗ = 9.81 m with specific wave resistance Cwo = 0.051 and (b) the optimized channel of width
w∗ = 4.9 m with specific wave resistance Cwo = 0.013; the achieved wave resistance reduction
(0.051− 0.013)/0.051 = 75%.

symmetric ship–channel configuration at depth Froude number 1.3. Coincidentally,
it turned out to be 4.9 m, just half of the original value. The wave resistance is now
reduced by 75%. The associated wave patterns in the optimal narrow channel and in
the original channel are shown in figure 2. It is obvious that the resultant waves in
the ship wake are much weaker in the optimal width channel than in the original. The
lower energy density in the optimal channel multiplied by its reduced width explains
the dramatic drop in wave resistance.

We were strongly stimulated by this success to seek a full theoretical understanding
of this intriguing phenomenon and eventually discovered that the wave resistance of a
ship in a channel can be made to vanish within the framework of a linear shallow-water
wave approximation and, furthermore, even in a more accurate nonlinear theory. By
analogy to electrical conductors, which are known to become superconductive (zero
electrical resistance) under certain conditions, we propose the name ‘shallow channel
superconductivity’ for this phenomenon.

Here, a few comments on the exciting topic of waveless ships are in order. Naval
architects have always striven for ships without waves. Bow bulbs or submerged wings
attached to ship hulls are good examples of mutual cancellation of waves originating
from different sources. In principle, ship waves can be even completely eliminated
within linear theory. Several interesting theoretical proposals have been made recently
by Tuck (1989), Tuck & Tulin (1992), and Tulin & Oshri (1994). The experimental
investigation of Mori (1993) is also worth mentioning. But to our knowledge the idea
of ship superconductivity in shallow water has never been demonstrated or proposed
before. Intuitively speaking, since wave dispersion is weaker in shallow water, the
interference between waves arising from different origins becomes more effective than
in deep water, especially at supercritical speeds. In this sense waveless ships in shallow
water may be more feasible.

During revision of this paper we became aware of two important historic papers,
namely Russell (1837) and Busemann (1935), that are related to our topic. In his
article Russell, the well-known discoverer of the solitary wave, reported that a spirited
horse pulling a boat in a canal had drawn the boat up onto its own wave leading to a
significant reduction in resistance. The boat owner had noted this and the event lead
to ‘high-speed’ services on some of Britain’s canals in the 1820s and ’30s. Although
we cannot know the exact mechanism of this phenomenon, we conjecture that the
diminished resistance occurred at a slightly supercritical speed where a favourable
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Figure 3. Schematic of the problem.

interference between stern waves and bank-reflected bow waves might have taken
place as proposed here. The second paper was given at the historic Volta Congress
in 1935 and came to our notice through a recent memorial paper by Ferrari (1996)
who was an original participant. In that paper Busemann proposed to cancel the
wave drag of supersonic aeroplanes, at least at zero lift and in a two-dimensional
approximation, by means of a biplane configuration. This would be accomplished by
coupling two airfoils in such a way as to form a kind of Venturi tube: the waves
produced by each one of the two internal surfaces and incident upon the other would
not be reflected. This idea came to be known as Busemann’s biplane. Indeed, it is
also the basic idea of our paper in view of the analogy between two-dimensional
supersonic gas dynamics and shallow-water waves. The essential difference lies in our
nonlinear treatment of water waves involving dispersion.

In §2 we illustrate our basic idea with a simple linear two-dimensional wave equation
applicable to a supercritical ship in shallow water or to an aerofoil in supersonic flight,
neglecting both dispersive and nonlinear effects. We show that the wave resistance
acting on a slender body in a channel becomes zero for a suitable combination of
body speed, channel depth and channel width if the afterbody geometry is adapted
to an arbitrary forebody according to a simple rule. In §3 we extend the analysis by
considering a more accurate nonlinear Kadomtsev–Petviashvili (KP) equation (2-D
KdV equation). By exploiting its known two-soliton solution we demonstrate that
a zero-wave-resistance ship is still possible, albeit with strong restrictions on body
geometry. The wave pattern in the zero-wave-resistance condition is localized and
characterized by phase lines which form a rhombus both in linear and nonlinear
theory. In §4 we conclude the discussion of the superconducting channel and indicate
the prospects of a practical catamaran of zero wave resistance in shallow water of any
width. Certain mathematical details of the two-soliton solution and the zero-wave-
resistance ship hull derived for arbitrary channel width are supplied in the Appendix.

2. Linear analysis
The problem of a slender ship in a shallow channel or a two-dimensional thin

aerofoil in a channel is sketched in figure 3. It is well known (Wehausen & Laitone
1960, p. 668) that steady supercritical shallow-water flow around a slender ship and
two-dimensional supersonic gas flow around a thin aerofoil are both approximately
governed by the same linearized wave equation with depth Froude number in the
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former playing the role of Mach number in the latter. In the following we discuss only
the shallow-water flow but the results are valid analogously also for the supersonic
gas flow.

Neglecting the nonlinear and the dispersive effects for the time being, we have the
governing equation (Tuck 1966)

(1−U2)ϕxx + ϕyy = 0 (−∞ < x < ∞, −w/2 < y < w/2), (2.1)

the boundary condition at the ship location, for symmetric flow,

ϕy|y=±0 = ∓ 1
2
U

dS(x)

dx
(−l/2 < x < l/2), (2.2)

and the boundary condition on the channel sidewalls

ϕy|y=±w/2 = 0 (−∞ < x < ∞), (2.3)

where ϕ is depth-averaged velocity potential, S(x) is distribution of ship cross-
sectional area, w is channel width, l is ship length and U is depth Froude number. All
variables are non-dimensional, having been derived from corresponding dimensional
variables, denoted by asterisks (*), as follows:

x = x∗/h∗, y = y∗/h∗, ϕ = ϕ∗/(h∗(g∗h∗)1/2), S = S∗/h∗2,

w = w∗/h∗, l = l∗/h∗, U = U∗/(g∗h∗)1/2,

}
(2.4)

where h∗ is water depth and g∗ is acceleration due to gravity.
The wave resistance acting on the ship (Rw = R∗w/(ρ

∗g∗h∗3), where ρ∗ is water
density) can be obtained exactly by integrating the longitudinal component of pressure
on the wetted hull surface Sw , namely

Rw =

∫
Sw

pnxds, (2.5)

where p = p∗/(ρ∗g∗h∗) is the pressure and nx is the x-component of the outward
normal vector on Sw at any point. The pressure is usually linearized in shallow-water
theory as

p = U
∂ϕ

∂x
− z. (2.6)

Then the linearized approximation of wave resistance becomes

Rw = −
∫ l/2

−l/2
U
∂ϕ

∂x

∣∣∣∣
y=0+

S ′(x)dx, (2.7)

where the prime denotes derivative with respect to the independent variable. The
free-surface displacement ζ = ζ∗/h∗ has the linearized approximation

ζ = Uϕx. (2.8)

Here we consider only supercritical speeds, i.e. U > 1. In this case the equation
(2.1) is hyperbolic. Since the problem is symmetric about the x-axis, it is sufficient
to consider the half-region y > 0. The solution of the hyperbolic problem is easily
obtained by the characteristic line theory. There exist two characteristic lines:

ξ = x+ y cot α = const, η = x− y cot α = const, (2.9)

yielding the general solution,

ϕ(x, y) = F(ξ) + G(η), (2.10)



310 X.-N. Chen and S. D. Sharma

where tan α = 1/(U2 − 1)1/2 is the slope of the lines. F and G are determined by the
boundary conditions and the causality condition. First, let us suppose there are no
channel sidewalls, i.e. the ship moves in sidewise-unrestricted shallow water. Here
the causality condition implies that any disturbance is propagated only downstream.
Hence, the realistic solution has only one branch, i.e. for y > 0

ϕ(x, y) = F(ξ). (2.11)

Substituting the above expression into the ship boundary condition (2.2), we get

F(ξ) = − U

2(U2 − 1)1/2
S(ξ). (2.12)

Using the velocity potential given by (2.11) and (2.12), the wave resistance in (2.7) is
found to be

Rw =
U2

2(U2 − 1)1/2

∫ l/2

−l/2
S ′(x)2dx, (2.13)

which is a well-known supercritical result, see equation (6.22) of Tuck (1966). Note
that every cross-section of the ship radiates its own wave disturbance. But they are
all parallel and do not interact with each other at all since there is no dispersion. The
wave resistance given by (2.13) is the sum of their individual positive contributions.
The free-surface displacement in (2.8) is also found to be

ζ(x, y) = − U2

2(U2 − 1)1/2
S ′(ξ) (y > 0). (2.14)

For a normal hull form, S ′(x) is negative in the forebody x > 0 and positive in the
afterbody x < 0. So the bow generates a wave elevation while the stern generates
a wave depression in the supercritical case. This corresponds to a shock wave of
compression at the leading edge and of expansion at the trailing edge in supersonic
flow. We note in passing that each elementary wave propagates in a direction normal
to its crest line at exactly the critical speed of unity and the slope is such that the
induced wave speed in the direction of motion of the ship is just equal to ship speed
U.

Now we reintroduce the channel sidewalls. On each side the ship-generated waves
are obliquely incident on the sidewall and reflected by it. It is obvious that if the
reflected bow wave elevation just reaches the stern where the ship itself would create
a wave depression, then the two effects will counteract each other and the resulting
free-surface displacement will be small or even totally absent if the original bow
and stern waves were of exactly equal magnitude. In the following, we analytically
look for a geometric condition on the hull form in combination with the principal
parameters, i.e. channel width w, ship length l and depth Froude number U, such
that the resulting waves in the wake would theoretically disappear and consequently
the wave resistance would be zero. By an admittedly superficial analogy to electrical
conductors at near zero temperatures this might be called a state of superconductivity.

In the case of zero wave resistance, the characteristic lines run as sketched in
figure 4(a). The first wave extends from the ship bow B (x = l/2, y = 0) through its
reflecting point Br (x = l/2− (w/2) cot α, y = w/2) on the sidewall up to the point B′

(x = l/2 − w cot α, y = 0) somewhere in the afterbody. The last wave extends from
the fore shoulder S through its reflecting point Sr on the sidewall up to the ship stern
S′ (x = −l/2, y = 0). The intermediate waves extend similarly from arbitrary points P
(between B and S) through Pr up to P′. Complete cancellation requires that the wave
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Figure 4. Schematic of the zero-wave-resistance solution in linear theory.

elevation primarily generated at the point P must be exactly the same size as the
wave depression associated with the point P′. Since the generated wave disturbance is
linearly proportional to the slope of the cross-sectional area curve, this requirement
means that S ′(x) at P′ is of equal magnitude but opposite sign to S ′(x) at P, see
figure 4(b). The geometric condition for the state of zero wave resistance is, therefore,

S ′(x) =

 arbitrary, w cot α− l/2 < x 6 l/2
0, l/2− w cot α 6 x 6 w cot α− l/2
−S ′(x+ w cot α), −l/2 6 x 6 l/2− w cot α,

(2.15)

along with the minimum length condition l > w cot α. For simplicity, we add a
maximum length condition, l 6 2w cot α, which ensures that the point B′ lies in the
afterbody. But note that this is dispensable if one is willing to cope with the complexity
of multiple reflections. Although mathematically the function S(x) between points
B and S can be arbitrary, it is realistic to assume that S ′(x) is non-positive in the
forebody and that S(x) vanishes at the bow. Moreover, if we want the hull form
to be smooth at the shoulders S and B′, the curve S(x) must have cusps at the
bow and stern, i.e. S ′(−l/2) = S ′(l/2) = 0. This implies either a pointed bow or a
wedge-shaped bow with zero angle of entrance. Such a zero-wave-resistance solution
is schematically shown in figure 4. It is obvious that the function S(x) sketched in
figure 4(c) forms a closed body, not necessarily fore-and-aft symmetric.

We now check analytically whether there are really no waves left in the ship wake
under the above conditions. Before the point B′ the ship is not affected by the reflected
waves. So the solution along the x-axis in this range is the same as in an infinitely
wide channel, i.e.

ϕ(x, y) = F(ξ) = − U

2(U2 − 1)1/2
S(ξ) (x > l/2− w cot α, y = +0). (2.16)

After the point B′, the solution is generally,

ϕ(x, y) = F(ξ) + G(η) (x 6 l/2− w cot α, y = +0), (2.17)
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where F(ξ) represents a possible ship-generated wave (so far unknown) and G(η) a
sidewall-reflected wave (already known). To achieve our purpose we must prove that
F ′(ξ) = 0 along x 6 l/2− w cot α, y = +0. Now, G(η) at an arbitrary point P′ comes
originally from the point P via reflection at Pr, so that by virtue of sidewall condition
(2.3) we get

G′(x) = F ′(x+w cot α) = − U

2(U2 − 1)1/2
S ′(x+w cot α) (x 6 l/2−w cot α, y = +0).

(2.18)
Using (2.17), (2.18) and (2.15) we derive the normal velocity at y = +0 and finally
obtain

∂ϕ

∂y
= F ′(x) cot α− 1

2
U S ′(x) (x 6 l/2− w cot α, y = +0). (2.19)

Comparing it with the ship boundary condition (2.2), we directly obtain

F ′(x) = 0 (x 6 l/2− w cot α). (2.20)

This result means that the waves generated by the ship forebody, after reflection at
the channel sidewall, are totally absorbed by the ship afterbody and, consequently,
there are absolutely no waves in the ship wake. Zero wave resistance can be verified
by evaluating the integral (2.7) in the following manner. The integration is divided
into three intervals: B to S, S to B′, and B′ to S′. Since S ′(x) = 0 in the middle interval
S to B′, its integration makes no contribution. Since no wave is incident upon the
interval B to S and no wave is radiated from the interval B′ to S′, i.e. (2.16) and (2.17)
with (2.20) hold, respectively, the full integral can be written as

Rw = −U
[∫ l/2−w cot α

−l/2
G′(x)S ′(x)dx+

∫ l/2

w cot α−l/2
F ′(x)S ′(x)dx

]
. (2.21)

Further, substituting (2.16) and (2.18) into the above and using (2.15) we get

Rw =
U2

2(U2 − 1)1/2

[
−
∫ l/2−w cot α

−l/2
S ′(x+w cot α)S ′(x+w cot α)dx+

∫ l/2

w cot α−l/2
S ′(x)S ′(x)dx

]
.

=0. (2.22)

This completes the mathematical proof that a ship with cross-sectional area distribu-
tion (2.15) and satisfying the length conditions w/(U2 − 1)1/2 < l 6 2w/(U2 − 1)1/2 is
superconductive in the channel.

To see the superconductive phenomenon in detail we take an example. Let U2 = 2,
l/2 = 1+ and w/2 = 1, so cot α = 1. The geometric condition (2.15) is satisfied in the
simplest case by a rectangular cross-sectional area distribution, i.e.

S ′(x) = δ(x+ 1)− δ(x− 1), (2.23)

where δ(x) is Dirac delta function. The wave generated by such an idealized ‘ship’
is also Dirac delta function, i.e. an infinitely high and narrow pulse. The bow wave
pulse, after reflection at the channel sidewall, is completely absorbed by the stern, so
that there is no wave disturbance downstream and the wave resistance is zero. The
wave characteristic lines form a closed rhombus as sketched in figure 5. This shape is
typical of channel superconductivity and may be called a diamond wave pattern.

By contrast, if there were no channel sidewalls, both the bow and stern wave pulses
would extend downstream to infinity and the wave resistance would be infinitely large
within the linear theory, as can be seen by evaluating (2.13). But even a more realistic
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Figure 5. A superconductive rectangular ship generating a diamond pulse-wave pattern.

nonlinear analysis would predict a very high wave resistance for such a blunt-ended
hull form. The analogy extends to gas dynamics and this is the well-known reason
why supersonic aeroplanes normally have sharp ends rather than a blunt or even
rounded head or tail.

3. Nonlinear analysis
Now we seek a more accurate nonlinear solution of the same problem. It goes

beyond the preceding linear analysis by including effects of weak nonlinearity and
dispersion. As shown by Mei (1976) and others, a stationary Kadomtsev–Petviashivili
equation, or a stationary 2-D KdV equation,

(1−U2)ϕxx + ϕyy + 3Uϕxϕxx + 1
3
U2ϕxxxx = 0 (−∞ < x < ∞, −w/2 < y < w/2),

(3.1)

is obtained with the same boundary conditions (2.2) and (2.3) at the ship location
and on the channel sidewalls, respectively. All variables have the same meanings as
in the last section and are non-dimensionalized in the same way, see (2.4) etc.

Similarly to the linear analysis, we look for a no-wave solution in the supercritical
range U > 1. We know that the KP equation has a permanent single-soliton solution
(Drazin & Johnson 1989). If we write this solution in the ξ, η framework for our
purpose in the following form:

ϕ = F(ξ) or ϕ = G(η), (3.2)

where

ξ = x+ y cot α, η = x− y cot α, (3.3)

then we have from (3.1),

(1−U2 + cot2 α)F ′′ + 3UF ′F ′′ + 1
3
U2F ′′′′ = 0. (3.4)

The same equation holds for G(η). If only the soliton solution is permitted, i.e.
F ′(ξ)→ 0 as |ξ| → ∞, then the above equation can be integrated three times to yield
its soliton solution. But it is more easily verified by direct substitution that

F ′(ξ) = A sech2(kξ) (3.5)

is a solution, provided

A =
U2 − 1− cot2 α

U
, k =

[3(U2 − 1− cot2 α)]1/2

2U
. (3.6)
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Analogously, we have the same result for G′(η), i.e.

G′(η) = A sech2(kη), (3.7)

with (3.6). Physically, A is here the amplitude of longitudinal perturbation velocity and
the amplitude of wave elevation is approximately UA based on the linear expression
(2.8). The first equation of (3.6) yields

tan α = 1/(U2 − 1− AU)1/2, (3.8)

so we see that the slope of the characteristic lines now depends on the amplitude
of the soliton but includes the linear-theory relation as the zero-amplitude limiting
case. The soliton propagates normal to its crest line at a near-critical speed U sin α =
U1/2/(U − A)1/2 ≈ 1+ such that its induced speed in the direction of motion of the
ship is again exactly equal to ship speed U as in the linear solution.

Inspired by the linear solution, we hope to find a hull form whose forebody would
generate a solitary wave and whose afterbody would perfectly absorb the reflection
of the bow wave from the channel sidewall. The solitary bow wave obliquely incident
on a sidewall and its reflection are together equivalent to the oblique interaction of
two identical solitons in water of infinite width. Such a general two-soliton solution
of the KP (2-D KdV) equation is obtained, for example, by using the bilinear form
given by Drazin & Johnson (1989, p. 124). So we can exploit it to determine the
shape of the ship inversely. We derive a two-soliton solution of our KP equation (3.1)
by means of a transformation, see the Appendix for details.

Mei (1976) gave the single-soliton solution of (3.1) for a so-called half-body com-
prising a long sharp nose protruding forward to x → ∞ and a parallel body of
constant cross-section extending aft to x→ −∞ in infinitely wide shallow water. The
wave resistance was given as well, see equation (6.11) in Mei (1976), and is non-zero
for a body of finite thickness. It is easy to imagine that if we now add channel
sidewalls suitably, similar to the linear analysis, the reflected soliton will close the
half-body at x→ −∞ such that no wave will be left in the wake.

Assume that the bow soliton is generated around a point B (xo, 0) in the forebody
and that its reflection is centred around a point S (−xo, 0) in the afterbody, as sketched
in figure 6. Let C (0, w/2) be the centre point of the intersection of two identical
solitons on the line y = w/2 such that the boundary condition on a channel sidewall
(2.3) is satisfied. The two-soliton solution is given by (A 2) in the Appendix. Generally,
by substituting ϕ of (A 2) into (2.2), we can obtain the zero-wave-resistance ship hull
S(x) for arbitrary channel width w. We give complete results in the Appendix, and
it will be seen that the ship hull S(x) is now fore-and-aft symmetric, i.e. S(x) is an
even function. For simplicity we assume here that the points B and S are sufficiently
far from the centre point C, compared to the typical solitary wavelength 2π/k, i.e.
kxo sin α � 1. Then the solution along the ship location is an asymptotic expression
of the two-soliton solution, namely two isolated single solitons like (3.5) and (3.7),

ϕξ = F(ξ − xo) = A sech2k(ξ − xo) (x > 0, y = +0), (3.9)

ϕη = G(η + xo) = A sech2k(η + xo) (x < 0, y = +0). (3.10)

Here the important soliton location parameter xo is expressed as

xo = − 1
2
λ+ 1

2
w cot α, (3.11)

where the nonlinear phase shift λ in the two-soliton interaction is found in the
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Figure 6. Schematic of zero-wave-resistance solution in nonlinear theory with a diamond-soliton
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Appendix to be

λ =
U

(3AU)1/2
log

U2 − 1− AU
U2 − 1− 4AU

. (3.12)

We now derive the ship cross-sectional area from the hull boundary condition (2.2).
Since

ϕy|y=+0 =

{
+ϕξ cot α (x > 0)
−ϕη cot αϕη (x < 0),

substituting it into the hull boundary condition (2.2) and using the expressions (3.9)
and (3.10) yields

dS(x)

dx
= − 2

U

∂ϕ

∂y

∣∣∣∣
y=0+

=


−2 cot α

U
ϕξ = −2 cot α

U
F(x− xo) (x > 0)

+
2 cot α

U
ϕη = +

2 cot α

U
G(x+ xo) (x < 0)

= −sgn(x)
2 cot α

U
A sech2[k(x− sgn(x)xo)]. (3.13)
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Integrating it once, taking advantage of the approximation kxo � 1, yields

S(x) = So{1− sgn(x) tanh[k(x− sgn(x)xo)]}/2, (3.14)

where So is the midship sectional area of the hull,

So =
4A cot α

Uk
, (3.15)

with arbitrary amplitude within the limits 0 < A < (U2 − 1)/U and k and tan α
written inversely as functions of A from (3.6)

k =
(3AU)1/2

2U
, tan α = 1/(U2 − 1− AU)1/2. (3.16)

The above solution is sketched in figure 6.
Since ϕx(x) according to (3.9) and (3.10) is an even function while S ′(x) according

to (3.13) is an odd function, the integrated wave resistance according to (2.7) is
automatically zero. The same holds for the general solution in the Appendix. This
completes the desired nonlinear superconductive solution. The wave crest lines again
form a rhombus, similar to the linear example in figure 5. But the nonlinear diamond
pattern consists of smooth solitary waves rather than linear pulse waves, and the phase
shift λ given in (3.12) lets the waves extend slightly beyond the transverse corners
of the rhombus. This soliton pattern allows a slender ship with cross-sectional area
distribution given by (3.14) to move at a supercritical speed without wave resistance,
see figure 6.

We take the ship length l = 4xo approximately and calculate the ship displacement
as

V =

∫ 2xo

−2xo

S(x)dx ≈ 2xo
4A cot α

Uk
= 2xoSo.

Then the longitudinal prismatic coefficient defined as CP = V/(Sol), being one of the
principal parameters of ship hull geometry, is found to be 0.5, which is a value within
the conventional design range for fast inland or coastal ships.

We now discuss conditions for the existence of such diamond solitons. Using (3.16)
and solving a quadratic equation, the amplitude A and wavenumber k of the soliton
can be expressed directly in terms of midship sectional area So,

A =
(U2 − 1)± ((U2 − 1)2 − 3

16
U2S2

o )1/2

2U
, k =

3

16
So tan α, (3.17)

where

tan α =

√
2

((U2 − 1)∓ ((U2 − 1)2 − 3
16
U2S2

o )1/2)1/2
. (3.18)

Here only the lower choice of the signs is realistic since A→ 0 as So → 0.
Note that nonlinearity puts a lower limit on supercritical speed, U = (1 +

3S 2
o /16)1/2 +

√
3So/8, at which superconductivity is possible. If we define a slen-

derness parameter ε = S
1/2
o /xo � 1, then kxo ≈ (3/16ε)S

3/2
o tan α. So the condition

kxo � 1 implies ε� (3/16)S
3/2
o tan α.

Besides the above condition, there are two other tacit prerequisites, namely no
upstream soliton and no Mach stem. First, when an upstream soliton is generated,
the problem becomes unsteady (e.g. see Wu 1987), which contradicts our stationarity
assumption. But if U exceeds a certain value depending mainly on the ratio of the
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cross-sectional areas of ship and channel, for example U > 1.25 for the case reported
in the Introduction, the flow will always be stationary. Second, it is known that if
the incidence angle ψ, here ψ = π/2 − α, is smaller than a critical value (in our
version, it is arctan (3AU)1/2, see the Appendix) depending on the soliton amplitude,
reflection by the sidewall will generate a third wave, the so-called Mach stem (Miles
1977b; Melville 1980). So ψ = π/2 − α should be larger than this critical value to
ensure the existence of a diamond soliton symmetric with respect to the midship
section. This puts another lower bound on the superconductive speed. Pedersen
(1988), based on his numerical results, pointed out that Mach reflection is also the
cause of generation of the unsteady upstream solitons, which would imply that the
two tacit prerequisites above are one and the same thing. But this proposition has not
been proved analytically. Anyway, even with a Mach stem, a stationary three-soliton
wave pattern (Miles 1977b) is still possible in a suitably diverging channel such that
the triple point moves parallel to the ship’s track. The corresponding hull form
would be neither fore-and-aft asymmetric nor closed. Since the Mach stem becomes
steadily wider in the diverging channel and carries mass and energy with it, the wave
resistance cannot vanish but may be small enough to be interesting.

Finally, it is a pleasure to observe that a hexagonal wave pattern is a typical perma-
nent wave pattern in shallow water, as was remarkably demonstrated in experiments
and well described with the KP equation by Hammack, Scheffner & Segur (1989)
and Hammack et al. (1995). Such genuinely two-dimensional, periodic wave patterns
were also reported earlier by Peregrine (1985). Comparing the hexagonal free wave
pattern with the superconductive rhombic ship wave pattern, we can imagine that
they are related. If we extend the idea to the case of periodic waves, we can get a
superconductive ‘ship’ periodically repeating from x = −∞ to x = ∞ adapted to the
given channel width.

4. Concluding remarks
We have shown by linear shallow-water theory, and confirmed by nonlinear analysis,

that slender ships can be designed to run at supercritical speeds on the centreline of a
straight rectangular channel without experiencing wave resistance. This phenomenon
may be aptly called channel superconductivity. Although we have based our nonlinear
analysis on the KP equation, the physical idea can be described by different equations
to their different degrees of accuracy. In another paper, see Chen & Sharma (1996),
we have used the more general Boussinesq equations but limited to weak-interaction
soliton solutions of Miles (1977a).

While unidirectional linear or weakly nonlinear shallow-water waves can propagate
only at the critical or a near-critical speed, the localized superconductive wave pattern
can move at any speed that is larger or even much larger than the critical speed. This
observation is not entirely new for water waves but may be significant if it could be
extended to other kinds of waves, e.g. light waves.

From a practical point of view it may be unrealistic to assume the existence of a long
uniform canal or river with smooth vertical sidewalls. So we have also investigated
the possibility of wave resistance reduction by optimal wave interference between the
twin hulls of a catamaran, which is mathematically equivalent to a single hull moving
parallel to an ideally reflecting sidewall. It is a classical option for high-speed ships.
By exploiting the new ideas presented here it seems that up to 50% reduction of wave
resistance is possible for a suitable configuration of symmetric hulls and theoretically
up to 100% for appropriately cambered hulls. As regards absolute speed, a depth
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Froude number U = 1.5 in inland or coastal waters of 10–30 m depth corresponds
to ship speeds ranging from 53 to 93 km h−1, i.e. 29–50 knots, which are well within
the range of present technical feasibility and economic interest.

The junior author (X.N.C.), who is being financially supported at the University
of Stuttgart by a research project (SC7STU) sponsored by the German Federal
Ministry of Education, Science, Research and Technology (BMBF), thanks the project
supervisor Professor Dr. K. Kirchgässner for encouraging him to complete this work
originally started at the University of Duisburg. We thank Associate Editor Professor
Peregrine and the Referees for their valuable criticism and comments.

Appendix. Two-soliton solution of the KP (2-D KdV) equation and the
derived zero-wave-resistance ship hull

A general two-soliton solution has been given in Drazin & Johnson (1989) for the
KP equation in terms of the bilinear form of Hirota’s method. The solution was
originally derived by Satsuma (1976). Because our KP equation has a different form,
it is necessary to transform the results for our purpose.

After a transformation

t→ t, x→ x+
3(U2 − 1)

U2
t, y → Uy, u = − 3

2U
ϕx, (A 1)

and setting ∂/∂t = 0, the 2-D KdV (KP) equation in Q5.30 of Drazin & Johnson
(1989) becomes our physical equation (3.1). So the two-identical-soliton solution of
(3.1) is obtained for our purpose in the form,

ϕx = −2U

3
u =

4U

3

∂2

∂x2
log f, or ϕ =

4U

3

∂

∂x
log f, (A 2)

where, in terms of variables that are used in §3,

f = 1 + exp(2kξ) + exp(2kη) + A2 exp(2kξ) exp(2kη), (A 3)

with ξ = x+ y cot α− x1 + δo, η = x− y cot α+ x1 + δo, where δo is left to be selected
such that the solution will be symmetric about the y-axis, and

A2 =
U2 − 1− AU
U2 − 1− 4AU

, (A 4)

involving the functions k and tan α of A as given in (3.16), and A is the amplitude
of its asymptotic single soliton (3.9) or (3.10). The centre point C (x = 0, y = w/2)
of the intersection of two identical solitons has been fixed on the channel sidewall.
Hence the half phase shift is determined as

δo = − 1

4k
logA2, (A 5)

and the phase shift λ in the x-direction, defined in (3.11), as

λ = −2δo. (A 6)

The asymptotic solitons (3.9) and (3.10) can be obtained from (A 2) by setting
x1 = xo− δo in ξ or η while η → +∞ and ξ remains finite, or ξ → −∞ and η remains
finite, respectively.

We see that the two-identical-soliton solution (regular reflection) is possible if
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Figure 7. The zero-wave-resistance ship hull and its associated wave pattern in the case of U = 1.5,
A = 0.1 and x1 = 10. (a) Three-dimensional plot of the wave pattern; (b) density plot of the wave
pattern; (c) slope of sectional area curve S ′(x); (d) cross-sectional area curve of ship hull S(x).

A2 > 0. It yields a critical value of the incidence angle ψ = π/2− α:

tan2 ψ > 3AU, i.e. A <
U2 − 1

4U
, (A 7)

which is equivalent to (1.10) of Miles (1977b) as A is small. When ψ is less than
this value, the solution becomes singular, in the sense that regular incoming waves
with sech2 profiles yield singular outgoing waves with -cosech2 profile (Miles 1977a).
Physically, the phenomenon of Mach reflection occurs (see Miles 1977b).

Finally, we derive the zero-wave-resistance ship hull S(x) from the two-soliton
solution (A 2). Substituting ϕ of (A 2) into (2.2), integrating once with respect to x
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and after straightforward calculation, one obtains

S(x) = −8

3

∂

∂y
log f|y=+0 =

16

3

k cot α sinh(2kx1)

cosh(2kx1) + A
1/2
2 cosh(2kx)

, (A 8)

where A2 is given in (A 4), k and tan α in (3.16), and w = 2x1 tan α obtained from
the boundary condition (2.3) on the channel sidewalls, i.e. fy = 0 at y = ±w/2. So
only A and w (or x1) are free to be selected for designing the ship hull, where x1 can
be arbitrary and A is restricted by (A 7). S(x) is an even function. This means the
derived zero-wave-resistance ship hull is fore-and-aft symmetric without considering
the detailed shape of cross-section. For kx1 � 1, we can get the same asymptotic
result as in (3.14) with x1 = xo − δo.

As an example, in figure 7 we show a zero-wave-resistance solution of a ship hull
and its associated wave pattern for chosen values U = 1.5, A = 0.1, x1 = 10, and
derived values w = 19.0693, S(0) = 1.214.
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